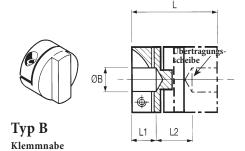


OLDHAM - Kupplungen

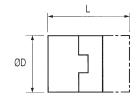
Oldham-Kupplung, Funktion

OS-Naben

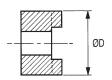

Die gefertigte Bohrungstiefe L1 kann bei der Vormontage als Anhaltspunkt dienen

Typ A

Nabe mit Stellschraube

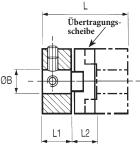

Merkmale

- von Drehbewegungen
- > Ausgleich von großen Wellenverlagerungen
- > Spielfrei bis 10⁸ Umdrehungen
- Der Axial- und Winkelversatz sollte klein gehalten werden
- Drehmomentscheibe
- eine Einzelbestellung von Kupplungshälften und Übertragungsscheiben
- **▷** Bohrungsdurchmesser 2 30 mm
- > Stoßdrehmoment 0,06 44 Nm



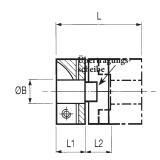
OS-Ungebohrte Naben

Vom Anwender anpaßbare Naben für Sonderanwendungen, z.B. Einbau in Röhren. Ungebohrte Naben sind zentriert und es ist keine Befestigung für die Wellen-Nabe-Verbindung vorgesehen. Die Außenabmessungen sind identisch mit den Naben mit Sacklochbohrungen.


OX-Naben mit Durchgangsbohrungen

Durchgangsbohrungen erlauben den Austausch der Übertragungsscheibe ohne Veränderung der Wellenausrichtung

Typ F


Nabe mit Stellschraube

Typ C

Typ G Klemmnabe

Typ D [Azetal] Typ DE [Nylon 11] Bis Größe D19

Ab Größe D25

Standard-Übertragungsscheiben [T = -20°C bis +60°C]

Hohe Steifigkeit, gute Notlaufeigenschaften, lange spielfreie Lebensdauer. Nylon 11 elastisches Material, isoliert Lärm und Schwingungen, Betriebsdaten ca 25 % von Azetal.

OLDHAM - Kupplungen

Baugrößen, Abmessungen und technische Daten $[M_{\rm d},$ Steife, J $\,$ nur für Azetal gültig] OS-Naben mit Sacklochbohrung

Bestell-Nr.			В	ohrung	R D	L	L_1	L_2	Sch	rauben	Stoß	Bruch	Dreh-	J	Gew.	1	Max. Verla	gerung
Naben		Scheiben		B						$\mathbf{M}_{\mathbf{A}}$	M _d	M_d	feder-	2		Radial	Axial	Win-
Typ + Größe	Typ D	+ Größe DE	min.	max.	mm	mm	mm	mm	R	Nm	Nm	Nm	steife Nm/rad	kgm ² x 10 ⁻⁸		±mm	±mm	kel ±°
															g			
OS6A	D6	DE6	2,000	3,18	6,4	12,7	3,8	5,1	М3	0,94	0,06	0,7	10	6	2,5	0,10	0,05	0,5
OS6C	D6	DE6	_	3,18	6,4	12,7	3,8	5,1	_	_	0,06	0,7	10	6	2,5	0,10	0,05	0,5
OS9 A	D9	DE9	3,000	5,00	9,5	12,7	3,8	5,1	M3	0,94	0,21	2,0	30	18	4,0	0,10	0,05	0,5
OS9 C	D9	DE9	_	5,00	9,5	12,7	3,8	5,1	_	_	0,21	2,0	30	18	4,0	0,10	0,05	0,5
OS13A	D13	DE13	3,000	6,35	12,7	15,9	4,3	7,3	М3	0,94	0,50	4,0	65	26	11,0	0,10	0,05	0,5
OS13C	D13	DE13	_	6,35	12,7	15,9	4,3	7,3	-	_	0,50	4,0	65	26	11,0	0,10	0,05	0,5
OS19A	D19	DE19	4,000	8,00	19,1	22,0	6,3	9,4	М3	0,94	1,70	10,0	115	67	12,0	0,20	0,10	0,5
OS19B	D19	DE19	4,000	8,00	19,1	22,0	6,3	9,4	M4	2,33	1,70	10,0	115	67	12,0	0,20	0,10	0,5
OS19C	D19	DE19	_	8,00	19,1	22,0	6,3	9,4	_	_	1,70	10,0	115	67	12,0	0,20	0,10	0,5
OS25A	D25	DE25	6,000	12,00	25,4	28,4	8,6	11,2	M4	2,27	4,00	13,0	205	252	31,0	0,20	0,10	0,5
OS25B	D25	DE25	6,000	12,00	25,4	28,4	8,6	11,2	M3	2,43	4,00	13,0	205	252	31,0	0,20	0,10	0,5
OS25C	D25	DE25	_	12,00	25,4	28,4	8,6	11,2	_	_	4,00	13,0	205	252	31,0	0,20	0,10	0,5
OS33A	D33	DE33	8,000	16,00	33,3	48,0	13,0	22,0	M4	2,27	9,00	53,0	615	1278	86,0	0,20	0,15	0,5
OS33B	D33	DE33	8,000	16,00	33,3	48,0	13,0	22,0	M3	2,43	9,00	53,0	615	1278	86,0	0,20	0,15	0,5
OS33C	D33	DE33	_	16,00	33,3	48,0	13,0	22,0	_	_	9,00	53,0	615	1278	86,0	0,20	0,15	0,5
OS41A	D41	DE41	9,525	20,00	41,3	50,8	16,7	17,4	M5	4,62	17,00	57,0	1200	3327	148,0	0,25	0,15	0,5
OS41B	D41	DE41	9,525	20,00	41,3	50,8	16,7	17,4	M4	5,66	17,00	57,0	1200	3327	148,0	0,25	0,15	0,5
OS41C	D41	DE41	_	20,00	41,3	50,8	16,7	17,4	_	_	17,00	57,0	1200	3327	148,0	0,25	0,15	0,5

Baugrößen, Abmessungen und technische Daten $[M_d,$ Steife, J nur für Azetal gültig] OX-Naben mit Durchgangsbohrung

Bestell-Nr.			l R	ohrung	R D	LI	L_1	L_2	Scl	hrauben	Stoß	Bruch	Dreh-	T	Gew.	1	Max. Verla	geriing
Naben	S	cheiben	_	B	2			22	00.	MA	M _d	M _d	feder-	,		Radial	Axial	Win-
Typ + Größe	Тур	+ Größe									"		steife	kgm ²				kel
	Ď	DE	min.	max.	mm	mm	mm	mm	R	Nm	Nm	Nm	Nm/rad	x 10 ⁻⁸	g	±mm	±mm	±°
OX19F	D19	DE19	4,000	8,00	19,1	26,0	9,4	7,2	M4	2,27	1,70	10,0	115	59	13	0,20	0,10	0,5
OX19G	D19	DE19	4,000	8,00	19,1	26,0	9,4	7,2	M4	2,33	1,70	10,0	115	59	13	0,20	0,10	0,5
OX25F	D25	DE25	6,000	12,00	25,4	32,4	11,6	9,2	M5	4,62	4,00	13,0	205	252	31	0,20	0,10	0,5
OX25G	D25	DE25	6,000	12,00	25,4	32,4	11,6	9,2	M3	2,43	4,00	13,0	205	252	31	0,20	0,10	0,5
OX33F	D33	DE33	8,000	16,00	33,3	48,0	15,0	18,0	M6	7,61	9,00	53,0	615	1133	74	0,20	0,15	0,5
OX33G	D33	DE33	8,000	16,00	33,3	48,0	15,0	18,0	M3	2,43	9,00	53,0	615	1133	74	0,20	0,15	0,5
OX41F	D41	DE41	9,525	20,00	41,3	50,8	17,8	15,3	M6	7,61	17,00	57,0	1200	3177	142	0,25	0,15	0,5
OX41G	D41	DE41	9,525	20,00	41,3	50,8	17,8	15,3	M4	5,66	17,00	57,0	1200	3177	142	0,25	0,15	0,5
OX50F	D50	-	9,525	25,40	50,0	59,6	20,6	18,4	M8	18,36	30,00	95,0	1375	7550	208	0,25	0,20	0,5
OX50G	D50	-	9,525	25,40	50,0	59,6	20,6	18,4	M5	11,40	30,00	95,0	1375	7550	208	0,25	0,20	0,5
OX57F	D57	-	12,000	30,00	57,1	78,0	28,4	21,2	M8	18,36	44,00	150,0	2610	12410	361	0,25	0,20	0,5
OX57G	D57	-	12,000	30,00	57,1	78,0	28,4	21,2	M6	19,34	44,00	150,0	2610	12410	361	0,25	0,20	0,5

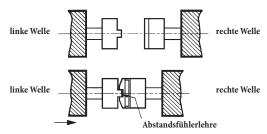
Standardbohrungen R B = $+0.03 / \pm 0.00$

Größe	2,00	3,00	3,18	4,00	4,76	5,00	6,00	6,35	8,00	9,53	10,00	11,00	12,00	12,70	14,00	15,00	15,88	16,00	18,00	19,00	19,05	20,00	24,00	25,00	25,40	30,00
6																										
9																										
13																										
19																										
25																										
33																										
41																										
50																										
57																										

Werkstoffe

- > Naben können gegen Mehrpreis mit Nuten geliefert

Nabe	Größe 6 - 13 Ms chromatiert
	Größe 19 - 57 Al-Legierung
Scheiben	D - Azetal
	DE - Nylon 11



OLDHAM - Kupplungen

Kupplungen

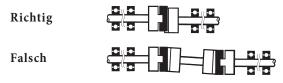
mit sacklochgebohrten Naben OS

- a] Schieben Sie die Naben ganz auf beide Wellen und ziehen Sie die Stellschrauben fest.
- b] Fixieren und sichern Sie die rechte Welle.
- c] Stecken Sie die Übertragungsscheibe vollständig auf die rechte
- d] Stecken Sie eine Fühlerlehre flach in den Nutgrund der Übertragungsscheibe und schieben Sie die linke Nabe bis zum Anschlag in die Übertragungsscheibe hinein, indem Sie die linke Welle verschieben.
- e] Richten Sie die Wellen innerhalb der zulässigen Verlagerungen aus und befestigen Sie die linke Nabe.
- f] Überprüfen Sie die Ausrichtung der Welle und korrigieren Sie diese gegebenenfalls.
- g] Entfernen Sie die Fühlerlehre.

Um eine neue Übertragungsscheibe einzubauen, ziehen Sie die linke Welle der montierten Nabe zurück und entnehmen Sie die alte Scheibe. Wiederholen Sie dann die Schritte c] bis g].

Abstandslehren

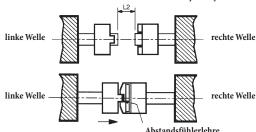
für alle Nabentypen


Die Abstände werden eingestellt, um thermische Ausdehnungen und Axialverlagerungen aufnehmen zu können. Die Abstände können auch

Kupplungsgröße	Abstands- Lehre
6, 9, 13	0,05 mm
19, 25	0,10 mm
33, 41	0,15 mm
50, 57	0,20 mm

vergrößert werden, jedoch sollte die gesamte Axialbewegung nicht die, in der Betriebsdatentabelle unter "Axialverlagerung" angegebenen Werte übersteigen.

Radialabstützung


Die Wellen müssen durch 2 Lager ausreichend abgelagert sein. Oldham Kupplungen können nicht paarweise verwendet werden.

Kupplungen

mit durchgebohrten Naben OX

- a] Schieben Sie die Naben auf beide Wellen.
- b] Richten Sie die Wellen innerhalb der zulässigen Verlagerungen aus und positionieren Sie diese so, daß ein Mindestabstand L2 zwischen den Wellenenden verbleibt. Fixieren Sie beide Wellen, überprüfen Sie die Ausrichtung und korrigieren Sie gegebenenfalls.
- c] Positionieren Sie die rechte Nabe mit der Innenfläche bündig zum Wellenende und ziehen Sie die Schrauben fest..
- d] Schieben Sie die Übertragungsscheibe radial auf die Feder der rechten Nabe. Stellen Sie sicher, daß diese voll trägt.
- e] Stecken Sie eine Fühlerlehre flach in den Nutgrund der Übertragungsscheibe und schieben Sie die linke Nabe bis zum Anschlag in die Übertragungsscheibe hinein, indem Sie die linke Welle verschieben.
- f] Ziehen Sie die Befestigungsschrauben an und entfernen Sie die Abstandslehre. Um eine neue Übertragungsscheibe zu montieren, lösen Sie die Gewinnstifte in der Nabe und ziehen Sie die linke Welle zurück. Schieben Sie die alte Scheibe radial heraus und ersetzen diese durch eine neue. Wiederholen Sie die Schritte d] bis f].

Um die Winkelstellung der Wellen zu erhalten, ziehen Sie die linke Welle zurück und wiederholen Sie die Schritte c] bis g] wie bei der Sacklochausführung.

Betriebsfaktoren

Maximaldrehmomente beziehen sich auf Antriebe ohne Verlagerungen und im Falle von Oldham Kupplungen ohne Verlagerung oder Axialbewegung. Multiplizieren Sie die Betriebsfaktoren mit den Lastmomenten wie erläutert, z.B.

Lastmoment der Anwendung = 1 Nm Betriebsfaktor = 2 Erforderliches Drehmoment = 2 Nm

Wählen Sie eine Kupplung aus, deren Maximalmoment größer als 2-Nm ist.

Bitte beachten Sie, daß sich die Faktoren auf die echten kumulierten Belastungszeiten beziehen und nicht auf die Einschaltzeiten der Maschine.

Lastdauer	Betriebs- faktor
kurzzeitige Last	1
1 Stunde pro Tag	2
3 Stunden pro Tag	4
6 Stunden pro Tag	6
12 Stunden pro Tag	8

Bestellbeispiel				
1 St. OLDHAM-Kupplung	Größe 19	1 St. OLDHAM-Kupplung Hälfte	OS19A-6	
Во	ohrung 6 u. 8 mm	1 St. OLDHAM-Kupplung Hälfte	OS19A-8	
mit Drehmome	ntsscheibe Azetal	1 St. Drehmomentscheibe	D19	